264 research outputs found

    Direct determination of the solar neutrino fluxes from solar neutrino data

    Get PDF
    We determine the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian approach we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. This is done by means of a Markov Chain Monte Carlo employing the Metropolis-Hastings algorithm. We also describe how these results can be applied to test the predictions of the Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with good statistical agreement.Comment: 24 pages, 1 table, 7 figures. Acknowledgments correcte

    Probing Dark Matter

    Get PDF
    Recent novel observations have probed the baryonic fraction of the galactic dark matter that has eluded astronomers for decades. Late in 1993, the MACHO and EROS collaborations announced in this journal the detection of transient and achromatic brightenings of a handful of stars in the Large Magellanic Cloud that are best interpreted as gravitational microlensing by low-mass foreground objects (MACHOS). This tantalized astronomers, for it implied that the population of cool, compact objects these lenses represent could be the elusive dark matter of our galactic halo. A year later in 1994, Sackett et al. reported the discovery of a red halo in the galaxy NGC 5907 that seems to follow the inferred radial distribution of its dark matter. This suggested that dwarf stars could constitute its missing component. Since NGC 5907 is similar to the Milky Way in type and radius, some surmised that the solution of the galactic dark matter problem was an abundance of ordinary low-mass stars. Now Bahcall et al., using the Wide-Field Camera of the recently repaired Hubble Space Telescope, have dashed this hope.Comment: 3 pages, Plain TeX, no figures, published as a News and Views in Nature 373, 191 (1995

    Nuclear reactions in the Sun after SNO and KamLAND

    Full text link
    In this brief review we discuss the possibility of studying the solar interior by means of neutrinos, in the light of the enormous progress of neutrino physics in the last few years. The temperature near the solar center can be extracted from Boron neutrino experiments as: T=(1.57±0.01)107K T= (1.57 \pm 0.01) 10^7 K. The energy production rate in the Sun from pp chain and CNO cycle, as deduced from neutrino measurements, agrees with the observed solar luminosity to about twenty per cent. Progress in extracting astrophysical information from solar neutrinos requires improvement in the measurements of 3He+^3He+ \\4He→7Be+γ^4He \to ^7Be+\gamma and p+14N→15O+γp+^{14}N \to ^{15}O+ \gamma.Comment: To appear in the Proceedings of Beyond the Desert '03, Fourth International Conference on Physics Beyond the Standard Model, Schloss Ringberg, Germany, June 9-14, 200

    The "Solar Model Problem" Solved by the Abundance of Neon in Stars of the Local Cosmos

    Full text link
    The interior structure of the Sun can be studied with great accuracy using observations of its oscillations, similar to seismology of the Earth. Precise agreement between helioseismological measurements and predictions of theoretical solar models has been a triumph of modern astrophysics (Bahcall et al. 2005). However, a recent downward revision by 25-35% of the solar abundances of light elements such as C, N, O and Ne (Asplund et al. 2004) has broken this accordance: models adopting the new abundances incorrectly predict the depth of the convection zone, the depth profiles of sound speed and density, and the helium abundance (Basu Antia 2004, Bahcall et al. 2005). The discrepancies are far beyond the uncertainties in either the data or the model predictions (Bahcall et al. 2005b). Here we report on neon abundances relative to oxygen measured in a sample of nearby solar-like stars from their X-ray spectra. They are all very similar and substantially larger than the recently revised solar value. The neon abundance in the Sun is quite poorly determined. If the Ne/O abundance in these stars is adopted for the Sun the models are brought back into agreement with helioseismology measurements (Antia Basu 2005, Bahcall et al. 2005c).Comment: 13 pages, 3 Figure

    Solar Neutrinos: Status and Prospects

    Full text link
    We describe the current status of solar neutrino measurements and of the theory -- both neutrino physics and solar astrophysics -- employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the neutrino-electron elastic scattering rate for 8B neutrinos to 3%; the latest SNO global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle theta12; Borexino results for both the 7Be and pep neutrino fluxes, the first direct measurements constraining the rate of ppI and ppII burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on theta13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.Comment: 82 pages, 11 figure

    Neutrino Mass and Oscillation

    Get PDF
    The question of neutrino mass is one of the major riddles in particle physics. Recently, strong evidence that neutrinos have nonzero masses has been found. While tiny, these masses could be large enough to contribute significantly to the mass density of the universe. The evidence for nonvanishing neutrino masses is based on the apparent observation of neutrino oscillation -- the transformation of a neutrino of one type or "flavor" into one of another. We explain the physics of neutrino oscillation, and review and weigh the evidence that it actually occurs in nature. We also discuss the constraints on neutrino mass from cosmology and from experiments with negative results. After presenting illustrative neutrino mass spectra suggested by the present data, we consider how near- and far-future experiments can further illuminate the nature of neutrinos and their masses.Comment: 43 pages, 8 figures, to appear in the Annual Review of Nuclear and Particle Science, Vol. 49 (1999

    Hot and Cold Dark Matter Search with GENIUS

    Get PDF
    GENIUS is a proposal for a large volume detector to search for rare events. An array of 40-400 'naked' HPGe detectors will be operated in a tank filled with ultra-pure liquid nitrogen. After a description of performed technical studies of detector operation in liquid nitrogen and of Monte Carlo simulations of expected background components, the potential of GENIUS for detecting WIMP dark matter, the neutrinoless double beta decay in 76-Ge and low-energy solar neutrinos is discussed

    Hot and Cold Dark Matter Search with GENIUS

    Get PDF
    GENIUS is a proposal for a large volume detector to search for rare events. An array of 40-400 'naked' HPGe detectors will be operated in a tank filled with ultra-pure liquid nitrogen. After a description of performed technical studies of detector operation in liquid nitrogen and of Monte Carlo simulations of expected background components, the potential of GENIUS for detecting WIMP dark matter, the neutrinoless double beta decay in 76-Ge and low-energy solar neutrinos is discussed.Comment: 11 pages, latex, 3 eps figures, requires svmult.cls. To appear in: Proceedings of "Sources and detection of dark matter in the Universe", Marina del Rey, CA, February 23-25, 2000, Springer 2000, edited by D. Clin

    Cosmology and CPT violating neutrinos

    Get PDF
    • …
    corecore